An expanded arsenal of immune systems that protect bacteria from phages

Cell Host Microbe. 2022 Nov 9;30(11):1556-1569.e5. doi: 10.1016/j.chom.2022.09.017. Epub 2022 Oct 26.

Abstract

Bacterial anti-phage systems are frequently clustered in microbial genomes, forming defense islands. This property enabled the recent discovery of multiple defense systems based on their genomic co-localization with known systems, but the full arsenal of anti-phage mechanisms remains unknown. We report the discovery of 21 defense systems that protect bacteria from phages, based on computational genomic analyses and phage-infection experiments. We identified multiple systems with domains involved in eukaryotic antiviral immunity, including those homologous to the ubiquitin-like ISG15 protein, dynamin-like domains, and SEFIR domains, and show their participation in bacterial defenses. Additional systems include domains predicted to manipulate DNA and RNA molecules, alongside toxin-antitoxin systems shown here to function in anti-phage defense. These systems are widely distributed in microbial genomes, and in some bacteria, they form a considerable fraction of the immune arsenal. Our data substantially expand the inventory of defense systems utilized by bacteria to counteract phage infection.

Keywords: abortive infection; anti-phage defense; bacterial immunity; microbial genomics.

MeSH terms

  • Bacteria / genetics
  • Bacteriophages* / genetics
  • Genome, Microbial
  • Genomics
  • Immune System