Multifunctional Platform Based on a Copper(I) Complex and NaYF4:Tm3+,Yb3+ Upconverting Nanoparticles Immobilized into a Polystyrene Matrix: Downshifting and Upconversion Oxygen Sensing

ACS Appl Mater Interfaces. 2022 Oct 26;14(42):47902-47912. doi: 10.1021/acsami.2c14579. Epub 2022 Oct 17.

Abstract

This work presents an innovative approach to obtain a multifunctional hybrid material operating via combined anti-Stokes (upconversion) and Stokes (downshifting) emissions for oxygen gas sensing and related functionalities. The material is based on a Cu(I) complex exhibiting thermally activated delayed fluorescence emission (TADF) and infrared-to-visible upconverting Tm3+/Yb3+-doped NaYF4 nanoparticles supported in a polystyrene (PS) matrix. Excitation of the hybrid material at 980 nm leads to efficient transfer of Tm3+ emission in the ultraviolet/blue region to the Cu(I) complex and consequently intense green emission (560 nm) of the latter. Additionally, the green emission of the complex can also be directly generated with excitation at 360 nm. Independently of the excitation wavelength, the emission intensity is efficiently suppressed by the presence of molecular oxygen and the quenching rate is properly characterized by the Stern-Volmer plots. The results indicate that the biocompatible hybrid material can be applied as an efficient O2 sensor operating via near-infrared or ultraviolet excitation, unlike most optical oxygen sensors currently available which only work in downshifting mode.

Keywords: anti-Stokes emission; delayed fluorescence emission; dual excitation; energy transfer; functional material.