Quercus infectoria galls (QIGs) have a long history of treating ulcerative colitis (UC). The aqueous extract of QIG has an anti-UC effect. However, QIG's enema is easy to leak, and the action time and dose of the drug cannot be controlled well. Thus, QIG is inconvenient to use. This study aims to screen and prepare an optimized thermosensitive in situ gel with slow release and retention. Taking the transition sol-gel temperature (T sol-gel) as the investigation index, the Box-Behnken design response surface method (BBD-RSM) was used to optimize the dosages of Poloxamer 407 (P407), Poloxamer 188 (P188), and hydroxypropyl methyl cellulose (HPMC). Moreover, three formulations were selected, and the in vitro release rates were further optimized. The optimized rates of P407, P188, and HPMC were 24.07%, 1.22%, and 0.60%, respectively, and T sol-gel was 32.8°C ± 0.4°C. The cumulative release of gallic acid in the gel conformed to the first-order kinetic equation, and gallic acid was released entirely within 24 h. In addition, the morphological and chemical characterization of thermosensitive in situ gel demonstrated that excipients did not affect the characteristic functional groups of QIG and that the surface of the QIG gel had a porous and loose structure. Rheological methods showed that the QIG thermosensitive in situ gel was fluid at low temperature and semisolid at gelation temperature. Therefore, the prepared gel was sensitive to temperature and had slow-release, local retention properties.
Copyright © 2022 Abdulaziz Arkin et al.