Acetyl-coenzyme A (AcCoA) is a metabolic hub in virtually all living cells, serving as both a key precursor of essential biomass components and a metabolic sink for catabolic pathways for a large variety of substrates. Owing to this dual role, tight growth-production coupling schemes can be implemented around the AcCoA node. Building on this concept, a synthetic C2 auxotrophy was implemented in the platform bacterium Pseudomonas putida through an in silico-informed engineering approach. A growth-coupling strategy, driven by AcCoA demand, allowed for direct selection of an alternative sugar assimilation route-the phosphoketolase (PKT) shunt from bifidobacteria. Adaptive laboratory evolution forced the synthetic P. putida auxotroph to rewire its metabolic network to restore C2 prototrophy via the PKT shunt. Large-scale structural chromosome rearrangements were identified as possible mechanisms for adjusting the network-wide proteome profile, resulting in improved PKT-dependent growth phenotypes. 13C-based metabolic flux analysis revealed an even split between the native Entner-Doudoroff pathway and the synthetic PKT bypass for glucose processing, leading to enhanced carbon conservation. These results demonstrate that the P. putida metabolism can be radically rewired to incorporate a synthetic C2 metabolism, creating novel network connectivities and highlighting the importance of unconventional engineering strategies to support efficient microbial production.
Keywords: Adaptive laboratory evolution; Metabolic engineering; Phosphoketolase; Pseudomonas putida; Synthetic auxotrophy; Synthetic biology; Synthetic metabolism.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.