Background: Myeloid cells form an important element of the response to ischemia-reperfusion injury (IRI). While the mononuclear phagocyte system is complex and difficult to study, our knowledge of the cells involved and their impacts has been steadily increasing. However, there is still need to rigorously define and separate the functions of discreet myeloid populations in the kidney. The relatively recent distinction between resident macrophages and infiltrating monocytes in the kidney is an important advance that will enhance our understanding of the various roles of distinct myeloid populations, but specific tools are needed to rigorously define the contributions of each to injury, repair, and the transition to chronic disease.
Summary: Resident macrophages in the kidney form a network with various supportive roles during development and homeostasis. While the classification of these cells has been frequently convoluted in the literature, evidence for their roles during injury and repair is starting to accumulate. Current indications suggest they may have a minimal role during injury processes but may be important during the recovery phase. However, their involvement may also be dependent on their activation state in response to environmental cues. Investigations of the M1/M2 phenotype of myeloid cells have shed some light on the phenotypes that contribute to the manifestation of injury and/or recovery, but it is still difficult to form detailed conclusions. Here we will discuss the potential involvement of resident cells in these processes and the use of the M1/M2 system for defining the myeloid response following IRI.
Key messages: There is a need for additional specific analysis of the contribution of resident versus recruited myeloid cells to injury, recovery, and chronic disease in the kidney. In addition, the contribution of myeloid activation states that extend beyond simple M1/M2 classification is an important area that needs close attention. Our ability to assess resident cells is growing, and awareness of the shortcoming of the M1/M2 system is also increasing. These are promising developments which bode well for the future of kidney injury and disease research.
Keywords: Acute kidney injury; Acute renal failure; CKD; Inflammation; Resident macrophages.
© 2022 S. Karger AG, Basel.