Differential mRNA expression between ancestry groups can be explained by both genetic and environmental factors. We outline a computational workflow to determine the extent to which germline genetic variation explains cancer-specific molecular differences across ancestry groups. Using multi-omics datasets from The Cancer Genome Atlas (TCGA), we enumerate ancestry-informative markers colocalized with cancer-type-specific expression quantitative trait loci (e-QTLs) at ancestry-associated genes. This approach is generalizable to other settings with paired germline genotyping and mRNA expression data for a multi-ethnic cohort. For complete details on the use and execution of this protocol, please refer to Carrot-Zhang et al. (2020), Robertson et al. (2021), and Sayaman et al. (2021).
Keywords: Bioinformatics; Cancer; Computer sciences; Gene Expression; Genomics; RNAseq; Sequence analysis.
© 2022 The Author(s).