In humans with type 2 diabetes, at least 70% of patients exhibit islet amyloid plaques formed by misfolding islet amyloid polypeptides (IAPP). The oligomeric conformation and accumulation of the IAPP plaques lead to a panoply of cytotoxic effects on the islet β-cells. Currently, no marketed therapies for the prevention or elimination of these amyloid deposits exist, and therefore significant efforts are required to address this gap. To date, most of the experimental treatments are limited to only in vitro stages of testing. In general, the proposed therapeutics use various targeting strategies, such as binding to the N-terminal region of islet amyloid polypeptide on residues 1-19 or the hydrophobic region of IAPP. Other strategies include targeting the peptide self-assembly through π-stacking. These methods are realized by using several different families of compounds, four of which are highlighted in this review: naturally occurring products, small molecules, organometallic compounds, and nanoparticles. Each of these categories holds immense potential to optimize and develop inhibitor(s) of pancreatic amyloidosis in the near future.
Keywords: amylin; drug discovery; fibrils; islet amyloid polypeptide; pancreatic amyloidosis; type 2 diabetes.
© 2022 The Authors. Advanced Biology published by Wiley-VCH GmbH.