G protein-coupled receptors (GPCRs) recruit β-arrestins to coordinate diverse cellular processes, but the structural dynamics driving this process are poorly understood. Atypical chemokine receptors (ACKRs) are intrinsically biased GPCRs that engage β-arrestins but not G proteins, making them a model system for investigating the structural basis of β-arrestin recruitment. Here, we performed nuclear magnetic resonance (NMR) experiments on 13CH3-ε-methionine-labeled ACKR3, revealing that β-arrestin recruitment is associated with conformational exchange at key regions of the extracellular ligand-binding pocket and intracellular β-arrestin-coupling region. NMR studies of ACKR3 mutants defective in β-arrestin recruitment identified an allosteric hub in the receptor core that coordinates transitions among heterogeneously populated and selected conformational states. Our data suggest that conformational selection guides β-arrestin recruitment by tuning receptor dynamics at intracellular and extracellular regions.