Simple logistic regression can be adapted to deal with right-censoring by inverse probability of censoring weighting (IPCW). We here compare two such IPCW approaches, one based on weighting the outcome, the other based on weighting the estimating equations. We study the large sample properties of the two approaches and show that which of the two weighting methods is the most efficient depends on the censoring distribution. We show by theoretical computations that the methods can be surprisingly different in realistic settings. We further show how to use the two weighting approaches for logistic regression to estimate causal treatment effects, for both observational studies and randomized clinical trials (RCT). Several estimators for observational studies are compared and we present an application to registry data. We also revisit interesting robustness properties of logistic regression in the context of RCTs, with a particular focus on the IPCW weighting. We find that these robustness properties still hold when the censoring weights are correctly specified, but not necessarily otherwise.
Keywords: Average treatment effect; Competing risks; Ipcw adjustment; Logistic regression.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.