The growth performance, immunological status, and intestinal microbiology of white shrimp, Litopenaeus vannamei, were evaluated after dietary administration of the commercial probiotic SYNSEA. Shrimp were fed a control diet (without probiotic supplement) and two levels of SYNSEA probiotic, a low concentration of SYNSEA (LSL) containing 105 CFU (g diet)-1Bacillus subtilis and 105 CFU (g diet)-1 lactic acid bacteria (LAB), and a high concentration of SYNSEA (LSH) containing 106 CFU (g diet)-1B. subtilis and 106 CFU (g diet)-1 LAB, for 12 weeks. Shrimp fed with the LSL diet significantly increased growth performance as well as final weight and feed efficiency compared to the control, but not the LSH diet. After being orally challenged with Vibrio parahaemolyticus, shrimp fed with LSL diet prior to the challenge or fed with LSL and pathogen simultaneously showed significantly lower mortality compared to the control. SYNSEA probiotic significantly improved shrimp immune response, including lysozyme activity in LSL and LSH groups, and phagocytic activity in the LSL group in comparison to the control. In addition, the gene expressions of anti-lipopolysaccharide factor 2 in LSL and LSH groups, and penaeidin 4 in LSL were also up-regulated. Although there was no significant difference among groups for hepatopancreas and intestinal morphology, the muscular layer thickness and villi height were slightly improved in the intestines of shrimp fed SYNSEA. The 16S rDNA gene amplicon sequence analysis using next-generation sequencing revealed a significant decrease in α-diversity (Margalef's species richness) after oral administration of SYNSEA due to an increase in the relative abundance of beneficial bacteria in the gut flora of shrimp, such as Lactobacillus, Shewanella, and Bradymonadales and a decrease in harmful bacteria, such as Vibrio, Candidatus_Berkiella, and Acinetobacter baumannii. Together the data suggest that the provision of SYNSEA probiotic at 105 CFU (g diet)-1B. subtilis and 105 CFU (g diet)-1 LAB can improve shrimp growth, enhance immunity, and disease resistance status of the host. In addition, these findings conclude that SYNSEA probiotic has great preventive and therapeutic potential for Vibrio infection in shrimp aquaculture.
Keywords: Growth performance; Health status; Intestinal microbiota; SYNSEA probiotic; Shrimp.
Copyright © 2022 Elsevier Ltd. All rights reserved.