Vascular cognitive impairment and dementia (VCID) is a major heterogeneous brain disease caused by multiple factors, and it is the second most common type of dementia in the world. It is caused by long-term chronic low perfusion in the whole brain or local brain area, and it eventually develops into severe cognitive dysfunction syndrome. Because of the disease's ambiguous classification and diagnostic criteria, there is no clear treatment strategy for VCID, and the association between cerebrovascular pathology and cognitive impairment is controversial. Neuroinflammation is an immunological cascade reaction mediated by glial cells in the central nervous system where innate immunity resides. Inflammatory reactions could be triggered by various damaging events, including hypoxia, ischemia, and infection. Long-term chronic hypoperfusion-induced ischemia and hypoxia can overactivate neuroinflammation, causing apoptosis, blood-brain barrier damage and other pathological changes, triggering or aggravating the occurrence and development of VCID. In this review, we will explore the mechanisms of neuroinflammation induced by ischemia and hypoxia caused by chronic hypoperfusion and emphasize the important role of neuroinflammation in the development of VCID from the perspective of immune cells, immune mediators and immune signaling pathways, so as to provide valuable ideas for the prevention and treatment of the disease.
Keywords: hypoxia; ischemia; microglia; neuroinflammation; vascular cognitive impairment and dementia.