Background: High immune infiltration is associated with favourable prognosis in patients with non-small-cell lung cancer (NSCLC), but an automated workflow for characterizing immune infiltration, with high validity and reliability, remains to be developed.
Methods: We performed a multicentre retrospective study of patients with completely resected NSCLC. We developed an image analysis workflow for automatically evaluating the density of CD3+ and CD8+ T-cells in the tumour regions on immunohistochemistry (IHC)-stained whole-slide images (WSIs), and proposed an immune scoring system "I-score" based on the automated assessed cell density.
Results: A discovery cohort (n = 145) and a validation cohort (n = 180) were used to assess the prognostic value of the I-score for disease-free survival (DFS). The I-score (two-category) was an independent prognostic factor after adjusting for other clinicopathologic factors. Compared with a low I-score (two-category), a high I-score was associated with significantly superior DFS in the discovery cohort (adjusted hazard ratio [HR], 0.54; 95% confidence interval [CI] 0.33-0.86; P = 0.010) and validation cohort (adjusted HR, 0.57; 95% CI 0.36-0.92; P = 0.022). The I-score improved the prognostic stratification when integrating it into the Cox proportional hazard regression models with other risk factors (discovery cohort, C-index 0.742 vs. 0.728; validation cohort, C-index 0.695 vs. 0.685).
Conclusion: This automated workflow and immune scoring system would advance the clinical application of immune microenvironment evaluation and support the clinical decision making for patients with resected NSCLC.
Keywords: Immunohistochemistry (IHC); Non-small-cell lung cancer (NSCLC); Prognosis prediction; Tumour immune microenvironment; Whole-slide image.
© 2022. The Author(s).