Role of a conserved ion-binding site tyrosine in ion selectivity of the Na+/K+ pump

J Gen Physiol. 2022 Jul 4;154(7):e202113039. doi: 10.1085/jgp.202113039. Epub 2022 Jun 3.

Abstract

The essential transmembrane Na+ and K+ gradients in animal cells are established by the Na+/K+ pump, a P-type ATPase that exports three Na+ and imports two K+ per ATP hydrolyzed. The mechanism by which the Na+/K+ pump distinguishes between Na+ and K+ at the two membrane sides is poorly understood. Crystal structures identify two sites (sites I and II) that bind Na+ or K+ and a third (site III) specific for Na+. The side chain of a conserved tyrosine at site III of the catalytic α-subunit (Xenopus-α1 Y780) has been proposed to contribute to Na+ binding by cation-π interaction. We substituted Y780 with natural and unnatural amino acids, expressed the mutants in Xenopus oocytes and COS-1 cells, and used electrophysiology and biochemistry to evaluate their function. Substitutions disrupting H-bonds impaired Na+ interaction, while Y780Q strengthened it, likely by H-bond formation. Utilizing the non-sense suppression method previously used to incorporate unnatural derivatives in ion channels, we were able to analyze Na+/K+ pumps with fluorinated tyrosine or phenylalanine derivatives inserted at position 780 to diminish cation-π interaction strength. In line with the results of the analysis of mutants with natural amino acid substitutions, the results with the fluorinated derivatives indicate that Na+-π interaction with the phenol ring at position 780 contributes minimally, if at all, to the binding of Na+. All Y780 substitutions decreased K+ apparent affinity, highlighting that a state-dependent H-bond network is essential for the selectivity switch at sites I and II when the pump changes conformational state.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Binding Sites
  • Cations / metabolism
  • Potassium / metabolism
  • Sodium / metabolism
  • Sodium-Potassium-Exchanging ATPase* / metabolism
  • Tyrosine*

Substances

  • Cations
  • Tyrosine
  • Sodium
  • Sodium-Potassium-Exchanging ATPase
  • Potassium