Cellulose nanocrystals (CNC)/poly(ethylene oxide) (PEO) composite fibers were successfully produced in situ by injection into a hydrophobic solvent. Using a similar principle, a single step manufacturing method of injectable composites was developed by injection of a CNC solution into a hydrophobic resin. Molecular orientation and deformation of the fibers and composites were obtained using Raman spectroscopy. CNCs were found to be highly aligned along the fiber's axes, as confirmed by 2-fold symmetry of polar plots and second and fourth order orientation parameters. A shift in the position of a characteristic Raman band, initially located at ∼1095 cm-1, corresponding to vibrations of the cellulose backbone polymer chains was followed under tensile deformation. Using this shift, it was possible to estimate the fiber modulus as being ∼33 GPa, which is remarkably high. Stress transfer between the hydrophobic resin and the injected CNC fibers was quantified in this new type of composite using a modified shear-lag theory showing that appreciable reinforcement occurs. Our approach presents a new way to introduce highly loaded CNC fibers in situ into a composite structure.