Enteropathy is a pathophysiological condition characterized by decreased intestinal barrier function and absorption. Past studies have hypothesized that mycotoxins might impair children's growth by causing intestinal enteropathy, including interactions between mycotoxins and pathogens. We investigated the association of two mycotoxins, aflatoxin B1 (AFB1 ) and fumonisin B1 (FB1 ), independently and in conjunction with microbial pathogens, with fecal biomarkers of environmental enteropathy in children. As part of a larger MAL-ED study, 196 children were recruited in Haydom, Tanzania, and followed for the first 36 months of life. The gut inflammation biomarkers myeloperoxidase (MPO), neopterin (NEO), and alpha-1-antitrypsin (A1AT) were analyzed in stool samples at 24 months; with mean concentrations 5332.5 ng/L MPO, 807.2 nmol/L NEO, and 0.18 mg/g A1AT. Forty-eight children were measured for AFB1 -lys, with a mean of 5.30 (95% CI: 3.93-6.66) pg/mg albumin; and 87 were measured for FB1 , with a mean of 1.25 (95% CI: 0.72-1.76) ng/ml urine. Although the pathogens adenovirus and Campylobacter were associated with A1AT (p = 0.049) and NEO (p = 0.004), respectively, no association was observed between aflatoxin (MPO, p = 0.30; NEO, p = 0.08; A1AT, p = 0.24) or fumonisin (MPO, p = 0.38; NEO, p = 0.65; A1AT, p = 0.20) exposure and any gut inflammation biomarkers; nor were interactive effects found between mycotoxins and pathogens in contributing to intestinal enteropathy in this cohort. Although further studies are needed to confirm these results, it is possible that mycotoxins contribute to child growth impairment via mechanisms other than disrupting children's intestinal function.
Keywords: aflatoxin; biomarkers; enteric pathogens; enteropathy; fumonisin.
© 2022 The Authors. Risk Analysis published by Wiley Periodicals LLC on behalf of Society for Risk Analysis.