SyNPL: Synthetic Notch pluripotent cell lines to monitor and manipulate cell interactions in vitro and in vivo

Development. 2022 Jun 15;149(12):dev200226. doi: 10.1242/dev.200226. Epub 2022 Jun 23.

Abstract

Cell-cell interactions govern differentiation and cell competition in pluripotent cells during early development, but the investigation of such processes is hindered by a lack of efficient analysis tools. Here, we introduce SyNPL: clonal pluripotent stem cell lines that employ optimised Synthetic Notch (SynNotch) technology to report cell-cell interactions between engineered 'sender' and 'receiver' cells in cultured pluripotent cells and chimaeric mouse embryos. A modular design makes it straightforward to adapt the system for programming differentiation decisions non-cell-autonomously in receiver cells in response to direct contact with sender cells. We demonstrate the utility of this system by enforcing neuronal differentiation at the boundary between two cell populations. In summary, we provide a new adaptation of SynNotch technology that could be used to identify cell interactions and to profile changes in gene or protein expression that result from direct cell-cell contact with defined cell populations in culture and in early embryos, and that can be customised to generate synthetic patterning of cell fate decisions.

Keywords: Cell engineering; Cell interaction; Patterning; Pluripotent stem cells; SynNotch.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Communication
  • Cell Differentiation / genetics
  • Cell Line
  • Cells, Cultured
  • Mice
  • Pluripotent Stem Cells*