Untargeted and Targeted Circadian Metabolomics Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) and Flow Injection-Electrospray Ionization-Tandem Mass Spectrometry (FIA-ESI-MS/MS)

Methods Mol Biol. 2022:2482:311-327. doi: 10.1007/978-1-0716-2249-0_21.

Abstract

A diverse array of 24-h oscillating hormones and metabolites direct and reflect circadian clock function. Circadian metabolomics uses advanced high-throughput analytical chemistry techniques to comprehensively profile these small molecules (<1.5 kDa) across 24 h in cells, media, body fluids, breath, tissues, and subcellular compartments. The goals of circadian metabolomics experiments are often multifaceted. These include identifying and tracking rhythmic metabolic inputs and outputs of central and peripheral circadian clocks, quantifying endogenous free-running period, monitoring relative phase alignment between clocks, and mapping pathophysiological consequences of clock disruption or misalignment. Depending on the particular experimental question, samples are collected under free-running or entrained conditions. Here we describe both untargeted and targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) and flow injection-electrospray ionization-tandem mass spectrometry (FIA-ESI-MS/MS) based assays we have used for circadian metabolomics studies. We discuss tissue homogenization, chemical derivatization, measurement, and tips for data processing, normalization, scaling, how to handle outliers, and imputation of missing values.

Keywords: Circadian; Circadian metabolomics; Flow injection-electrospray ionization-tandem mass spectrometry (FIA-ESI-MS/MS); Liquid chromatography-tandem mass spectrometry (LC-MS/MS); Metabolites; Targeted metabolomics; Untargeted metabolomics.

MeSH terms

  • Body Fluids*
  • Chromatography, Liquid / methods
  • Metabolomics / methods
  • Spectrometry, Mass, Electrospray Ionization / methods
  • Tandem Mass Spectrometry* / methods