Equilibrium between excitation and inhibition (E/I balance) is key to healthy brain function. Conversely, disruption of normal E/I balance has been implicated in a range of central neurological pathologies. Magnetic resonance spectroscopy (MRS) provides a non-invasive means of quantifying in vivo concentrations of excitatory and inhibitory neurotransmitters, which could be used as diagnostic biomarkers. Using the ratio of excitatory and inhibitory neurotransmitters as an index of E/I balance is common practice in MRS work, but recent studies have shown inconsistent evidence for the validity of this proxy. This is underscored by the fact that different measures are often used in calculating E/I balance such as glutamate and Glx (glutamate and glutamine). Here we used a large MRS dataset obtained at ultra-high field (7 T) measured from 193 healthy young adults and focused on two brain regions - prefrontal and occipital cortex - to resolve this inconsistency. We find evidence that there is an inter-individual common ratio between GABA+ (γ-aminobutyric acid and macromolecules) and Glx in the occipital, but not prefrontal cortex. We further replicate the prefrontal result in a legacy dataset (n = 78) measured at high-field (3 T) strength. By contrast, with ultra-high field MRS data, we find extreme evidence that there is a common ratio between GABA+ and glutamate in both prefrontal and occipital cortices, which cannot be explained by participant demographics, signal quality, fractional tissue volume, or other metabolite concentrations. These results are consistent with previous electrophysiological and theoretical work supporting E/I balance. Our findings indicate that MRS-detected GABA+ and glutamate (but not Glx), are a reliable measure of E/I balance .
Keywords: 7T; E/I balance; GABA; Glutamate; MRS; Ultra-high field.
Copyright © 2022. Published by Elsevier Inc.