Large-Scale Integration of a Zinc Metasilicate Interface Layer Guiding Well-Regulated Zn Deposition

Adv Mater. 2022 Jul;34(27):e2202188. doi: 10.1002/adma.202202188. Epub 2022 May 30.

Abstract

Uneven distribution of electric fields at the electrolyte-anode interface and associated Zn dendrite growth is one of the most critical barriers that limit the life span of aqueous zinc-ion batteries. Herein, new-type Zn-A-O (A = Si, Ti) interface layers with thin and uniform thickness, porosity, and hydrophilicity properties are developed to realize homogeneous and smooth Zn plating. For ZnSiO3 nanosheet arrays on Zn foil (Zn@ZSO), their formation follows an "etching-nucleation-growth" mechanism that is confirmed by a well-designed Zn-island-based identical-location microscopy method, the geometric area of which is up to 1000 cm2 in one-pot synthesis based on a low-temperature wet-chemical method. Guided by the structural advantages of the ZSO layer, the Zn2+ flux gets equalized. Besides ultralow polarization, the life spans of symmetric cells and full cells coupled with a high-mass-loading K0.27 MnO2 ·0.54H2 O (8 mg cm-2 ) cathode, are increased by 3-7 times with the Zn@ZSO anode. Moreover, the large-scale preparation of Zn@ZSO foil contributes to a 0.5 Ah multilayer pouch cell with high performance, further confirming its prospects for practical application.

Keywords: high-capacity pouch cells; integration mechanisms; large-scale production; uniform Zn plating; zinc metasilicate coatings.