Many bacterial and fungal pathogens cause disease across mucosal surfaces, and to a lesser extent through skin surfaces. Pathogens that potentially cause disease vaginally across epithelial cells include Staphylococcus aureus, group A and B streptococci, Escherichia coli, Neisseria gonorrhoeae, and Candida albicans. We have previously shown that staphylococcal and streptococcal superantigens induce inflammatory chemokines from vaginal epithelial cells through the immune costimulatory molecule CD40 through use of a CRISPR cas9 knockout mutant and complemented epithelial cell line. In this study, we show that the potential vaginal pathogens S. aureus, group A and B streptococci, E. coli, an Enterococcus faecalis strain, and C. albicans in part use CD40 to stimulate interleukin-8 (IL-8) production from human vaginal epithelial cells. In contrast, N. gonorrhoeae does not appear to use CD40 to signal IL-8 production. Normal flora Lactobacillus crispatus and an Enterococcus faecalis strain that produces reutericyclin do not induce IL-8. These data indicate that many potential pathogens, but no normal commensals, induce IL-8 to help disrupt the human vaginal epithelial barrier through CD40, thus providing a potential therapeutic target for drug development. IMPORTANCE Most bacterial and fungal pathogens cause disease across mucosal, and to a lesser extent, skin barriers with the help of induced chemokines from epithelial cells. In this study, we showed that potential vaginal pathogens Staphylococcus aureus, group A and B streptococci, some Enterococcus faecalis strains, Escherichia coli, and Candida albicans use the immune costimulatory molecule CD40 to induce the chemokine interleukin-8 production. In contrast, Neisseria gonorrhoeae does not use CD40 to stimulate interleukin-8. Normal flora lactobacilli and at least one E. faecalis strain do not induce interleukin-8.
Keywords: CD40; Candida; Escherichia coli; Neisseria gonorrhoeae; Staphylococcus; Streptococcus; chemokines; epithelial cells; superantigens.