Reconstruction of neocortex: Organelles, compartments, cells, circuits, and activity

Cell. 2022 Mar 17;185(6):1082-1100.e24. doi: 10.1016/j.cell.2022.01.023. Epub 2022 Feb 24.

Abstract

We assembled a semi-automated reconstruction of L2/3 mouse primary visual cortex from ∼250 × 140 × 90 μm3 of electron microscopic images, including pyramidal and non-pyramidal neurons, astrocytes, microglia, oligodendrocytes and precursors, pericytes, vasculature, nuclei, mitochondria, and synapses. Visual responses of a subset of pyramidal cells are included. The data are publicly available, along with tools for programmatic and three-dimensional interactive access. Brief vignettes illustrate the breadth of potential applications relating structure to function in cortical circuits and neuronal cell biology. Mitochondria and synapse organization are characterized as a function of path length from the soma. Pyramidal connectivity motif frequencies are predicted accurately using a configuration model of random graphs. Pyramidal cells receiving more connections from nearby cells exhibit stronger and more reliable visual responses. Sample code shows data access and analysis.

Keywords: mouse, cortex, 3D reconstruction, electron microscopy, calcium imaging, pyramidal cell, mitochondria, synaptic connectivity, inhibitory cell, visual cortex.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Mice
  • Microscopy, Electron
  • Neocortex* / physiology
  • Organelles
  • Pyramidal Cells / physiology
  • Synapses / physiology