The ongoing transition towards 5G technology expedites the emergence of a variety of mobile applications that pertain to different vertical industries. Delivering on the key commitment of 5G, these diverse service streams, along with their distinct requirements, should be facilitated under the same unified network infrastructure. Consequently, in order to unleash the benefits brought by 5G technology, a holistic approach towards the requirement analysis and the design, development, and evaluation of multiple concurrent vertical services should be followed. In this paper, we focus on the Transport vertical industry, and we study four novel vehicular service categories, each one consisting of one or more related specific scenarios, within the framework of the "5G Health, Aquaculture and Transport (5G-HEART)" 5G PPP ICT-19 (Phase 3) project. In contrast to the majority of the literature, we provide a holistic overview of the overall life-cycle management required for the realization of the examined vehicular use cases. This comprises the definition and analysis of the network Key Performance Indicators (KPIs) resulting from high-level user requirements and their interpretation in terms of the underlying network infrastructure tasked with meeting their conflicting or converging needs. Our approach is complemented by the experimental investigation of the real unified 5G pilot's characteristics that enable the delivery of the considered vehicular services and the initial trialling results that verify the effectiveness and feasibility of the presented theoretical analysis.
Keywords: 5G mobile communications; key performance indicators; network requirements; network slicing; transport vertical; validation trials; vehicular services.