Purpose: A significant percentage of colorectal cancer patients proceeds to metastatic disease. We hypothesised that mitochondrial DNA (mtDNA) polymorphisms, generated by the high mtDNA mutation rate of energy-demanding clonal immune cell expansions and assessable in peripheral blood, reflect how efficiently systemic immunity impedes metastasis.
Patients and methods: We studied 44 rectal cancer patients from a population-based prospective biomarker study, given curative-intent neoadjuvant radiation and radical surgery for high-risk tumour stage and followed for metastatic failure. Blood specimens were sampled at the time of diagnosis and analysed for the full-length mtDNA sequence, composition of immune cell subpopulations and damaged serum mtDNA.
Results: Whole blood total mtDNA variant number above the median value for the study cohort, coexisting with an mtDNA non-H haplogroup, was representative for the mtDNA of circulating immune cells and associated with low risk of a metastatic event. Abundant mtDNA variants correlated with proliferating helper T cells and cytotoxic effector T cells in the circulation. Patients without metastatic progression had high relative levels of circulating tumour-targeting effector T cells and, of note, the naïve (LAG-3+) helper T-cell population, with the proportion of LAG-3+ cells inversely correlating with cell-free damaged mtDNA in serum known to cause antagonising inflammation.
Conclusion: Numerous mtDNA polymorphisms in peripheral blood reflected clonal expansion of circulating helper and cytotoxic T-cell populations in patients without metastatic failure. The statistical associations suggested that patient's constitutional mtDNA manifests the helper T-cell capacity to mount immunity that controls metastatic susceptibility.
Trial registration: ClinicalTrials.gov NCT01816607; registration date: 22 March 2013.
Keywords: CD4; Colorectal cancer; Immune cells; Metastasis; Mitochondrial DNA.
© 2021. The Author(s).