Alterations in time-varying functional connectivity (FC) have been found in Parkinson's disease (PD) patients. To date, very little is known about the influence of sex on brain FC in PD patients and how this could be related to disease severity. The first objective was to evaluate the influence of sex on dynamic FC characteristics in PD patients and healthy controls (HC), while the second aim was to investigate the temporal patterns of dynamic connectivity related to PD motor and non-motor symptoms. Ninety-nine PD patients and sixty-two HC underwent a neuropsychological and clinical assessment. Rs-fMRI and T1-weighted MRI were also acquired. Dynamic FC analyses were performed in the GIFT toolbox. Dynamic FC analyses identified two States: State I, characterized by within-network positive coupling; and State II that showed between-network connectivity, mostly involving somatomotor and visual networks. Sex differences were found in dynamic indexes in HC but these differences were not observed in PD. Hierarchical clustering analysis identified three phenotypically distinct PD subgroups: (1) Subgroup A was characterized by mild motor symptoms; (2) Subgroup B was characterized by depressive and motor symptoms; (3) Subgroup C was characterized by cognitive and motor symptoms. Results revealed that changes in the temporal properties of connectivity were related to the motor/non-motor outcomes of PD severity. Findings suggest that while in HC sex differences may play a certain role in dynamic connectivity patterns, in PD patients, these effects may be overcome by the neurodegenerative process. Changes in the temporal properties of connectivity in PD were mainly related to the clinical markers of PD severity.
© 2021. The Author(s).