Study of the water sorption and barrier performances of potato starch nano-biocomposites based on halloysite nanotubes

Carbohydr Polym. 2022 Feb 1:277:118805. doi: 10.1016/j.carbpol.2021.118805. Epub 2021 Nov 5.

Abstract

The barrier performances, in terms of water vapor sorption properties, gas and water barrier performances were analyzed on different starch-based nano-biocomposites. These multiphase systems were elaborated by melt blending starch and halloysite nanotubes at different contents with different plasticizers (glycerol, sorbitol and a mix of both polyols). The influence of the composition was investigated onto the structure, morphology, water sorption and barrier performances. As recently reported, halloysite nanoclay is a promising clay to enhance the properties of plasticized starch matrix. The barrier performances of nanofilled starch-based films were examined through gas and water permeabilities, diffusivity and water affinity. Glycerol-plasticized starch films give fine and more homogeneous nanofiller dispersion with good interfacial interactions, compared to sorbitol ones (alone or mixed), due to stronger and more stable hydrogen bonds. Tortuosity effects linked to the halloysite nanotubes were evidenced by gas transfer analysis, and exacerbated by the good interactions at interfaces and the resulting good filler dispersion. The influence of morphology and interfacial interactions towards water affinity was highlighted by moisture barrier properties. This was a key factor on the reduction of water diffusion and uptake with nanoclay content. A preferential water transfer was observed as a function of a plasticizer type in relation with the phenomenon of water plasticization in the nanocomposite systems.

Keywords: Barrier properties; Halloysite; Nano-biocomposite; Potato starch; Water sorption.