Effects of Resistant Starch on Symptoms, Fecal Markers, and Gut Microbiota in Parkinson's Disease - The RESISTA-PD Trial

Genomics Proteomics Bioinformatics. 2022 Apr;20(2):274-287. doi: 10.1016/j.gpb.2021.08.009. Epub 2021 Nov 25.

Abstract

The composition of the gut microbiota is linked to multiple diseases, including Parkinson's disease (PD). Abundance of bacteria producing short-chain fatty acids (SCFAs) and fecal SCFA concentrations are reduced in PD. SCFAs exert various beneficial functions in humans. In the interventional, monocentric, open-label clinical trial "Effects of Resistant Starch on Bowel Habits, Short Chain Fatty Acids and Gut Microbiota in Parkinson'sDisease" (RESISTA-PD; ID: NCT02784145), we aimed at altering fecal SCFAs by an 8-week prebiotic intervention with resistant starch (RS). We enrolled 87 subjects in three study-arms: 32 PD patients received RS (PD + RS), 30 control subjects received RS, and 25 PD patients received solely dietary instructions. We performed paired-end 100 bp length metagenomic sequencing of fecal samples using the BGISEQ platform at an average of 9.9 GB. RS was well-tolerated. In the PD + RS group, fecal butyrate concentrations increased significantly, and fecal calprotectin concentrations dropped significantly after 8 weeks of RS intervention. Clinically, we observed a reduction in non-motor symptom load in the PD + RS group. The reference-based analysis of metagenomes highlighted stable alpha-diversity and beta-diversity across the three groups, including bacteria producing SCFAs. Reference-free analysis suggested punctual, yet pronounced differences in the metagenomic signature in the PD + RS group. RESISTA-PD highlights that a prebiotic treatment with RS is safe and well-tolerated in PD. The stable alpha-diversity and beta-diversity alongside altered fecal butyrate and calprotectin concentrations call for long-term studies, also investigating whether RS is able to modify the clinical course of PD.

Keywords: Intestinal inflammation; Metagenomics; Microbiota; Parkinson’s disease; Short-chain fatty acid.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteria / genetics
  • Biomarkers
  • Butyrates / pharmacology
  • Fatty Acids, Volatile / pharmacology
  • Feces / microbiology
  • Gastrointestinal Microbiome*
  • Humans
  • Leukocyte L1 Antigen Complex / pharmacology
  • Parkinson Disease* / drug therapy
  • Prebiotics
  • Resistant Starch

Substances

  • Biomarkers
  • Butyrates
  • Fatty Acids, Volatile
  • Leukocyte L1 Antigen Complex
  • Prebiotics
  • Resistant Starch

Associated data

  • ClinicalTrials.gov/NCT02784145