Stereoselective Dehydroxyboration of Allylic Alcohols to Access (E)-Allylboronates by a Combination of C-OH Cleavage and Boron Transfer under Iron Catalysis

Org Lett. 2021 Dec 3;23(23):9094-9099. doi: 10.1021/acs.orglett.1c03359. Epub 2021 Nov 15.

Abstract

Iron-catalyzed direct SN2' dehydroxyboration of allylic alcohols has been developed to access (E)-stereoselective allylboronates. Allylic alcohols with diverse structures and functional groups, especially derived from natural products, underwent smooth transformation. The six-membered ring transition state formed by allylic alcohols and iron-boron intermediate was indicated to be the key component involved in transfer of the boron group, activation of the C-OH bond, and control of the stereoselectivity.

Publication types

  • Research Support, Non-U.S. Gov't