Neuron-specific ablation of eIF5A or deoxyhypusine synthase leads to impairments in growth, viability, neurodevelopment, and cognitive functions in mice

J Biol Chem. 2021 Nov;297(5):101333. doi: 10.1016/j.jbc.2021.101333. Epub 2021 Oct 22.

Abstract

Eukaryotic initiation factor 5A (eIF5A)†,‡ is an essential protein that requires a unique amino acid, hypusine, for its activity. Hypusine is formed exclusively in eIF5A post-translationally via two enzymes, deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase. Each of the genes encoding these proteins, Eif5a, Dhps, and Dohh, is required for mouse embryonic development. Variants in EIF5A or DHPS were recently identified as the genetic basis underlying certain rare neurodevelopmental disorders in humans. To investigate the roles of eIF5A and DHPS in brain development, we generated four conditional KO mouse strains using the Emx1-Cre or Camk2a-Cre strains and examined the effects of temporal- and region-specific deletion of Eif5a or Dhps. The conditional deletion of Dhps or Eif5a by Emx1 promotor-driven Cre expression (E9.5, in the cortex and hippocampus) led to gross defects in forebrain development, reduced growth, and premature death. On the other hand, the conditional deletion of Dhps or Eif5a by Camk2a promoter-driven Cre expression (postnatal, mainly in the CA1 region of the hippocampus) did not lead to global developmental defects; rather, these KO animals exhibited severe impairment in spatial learning, contextual learning, and memory when subjected to the Morris water maze and a contextual learning test. In both models, the Dhps-KO mice displayed more severe impairment than their Eif5a-KO counterparts. The observed defects in the brain, global development, or cognitive functions most likely result from translation errors due to a deficiency in active, hypusinated eIF5A. Our study underscores the important roles of eIF5A and DHPS in neurodevelopment.

Keywords: cognitive function; deoxyhypusine synthase; eIF5A; hypusine; mouse genetics; neurodevelopment; neurodevelopmental disorder; post-translational modification; translation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cerebellar Cortex / metabolism*
  • Cognition*
  • Eukaryotic Translation Initiation Factor 5A
  • Hippocampus / metabolism*
  • Humans
  • Lysine / analogs & derivatives
  • Lysine / metabolism
  • Mice
  • Mice, Knockout
  • Mixed Function Oxygenases / genetics
  • Mixed Function Oxygenases / metabolism*
  • Neurogenesis*
  • Neurons / metabolism*
  • Organ Specificity
  • Oxidoreductases Acting on CH-NH Group Donors / genetics
  • Oxidoreductases Acting on CH-NH Group Donors / metabolism*
  • Peptide Initiation Factors / genetics
  • Peptide Initiation Factors / metabolism*
  • RNA-Binding Proteins / genetics
  • RNA-Binding Proteins / metabolism*

Substances

  • Peptide Initiation Factors
  • RNA-Binding Proteins
  • hypusine
  • Mixed Function Oxygenases
  • deoxyhypusine hydroxylase
  • Oxidoreductases Acting on CH-NH Group Donors
  • deoxyhypusine synthase
  • Lysine