Line-field confocal optical coherence tomography as a tool for three-dimensional in vivo quantification of healthy epidermis: A pilot study

J Biophotonics. 2022 Feb;15(2):e202100236. doi: 10.1002/jbio.202100236. Epub 2021 Oct 21.

Abstract

Epidermal three-dimensional (3D) topography/quantification has not been completely characterized yet. The recently developed line-field confocal optical coherence tomography (LC-OCT) provides real-time, high-resolution, in-vivo 3D imaging of the skin. This pilot study aimed at quantifying epidermal metrics (epidermal thicknesses, dermal-epidermal junction [DEJ] undulation and keratinocyte number/shape/size) using 3D LC-OCT. For each study participant (8 female, skin-type-II, younger/older volunteers), seven body sites were imaged with LC-OCT. Epidermal metrics were calculated by segmentations and measurements assisted by artificial intelligence (AI) when appropriate. Thicknesses of epidermis/SC, DEJ undulation and keratinocyte nuclei volume varied across body sites. Evidence of keratinocyte maturation was observed in vivo: keratinocyte nuclei being small/spherical near the DEJ and flatter/elliptical near the skin surface. Skin microanatomy can be quantified by combining LC-OCT and AI. This technology could be highly relevant to understand aging processes and conditions linked to epidermal disorders. Future clinical/research applications are to be expected in this scenario.

Keywords: LC-OCT; dermal-epidermal junction; healthy skin; keratinocytes quantification; layer thicknesses; non-invasive 3D imaging.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Artificial Intelligence*
  • Epidermis / diagnostic imaging
  • Female
  • Humans
  • Pilot Projects
  • Skin
  • Tomography, Optical Coherence* / methods