As a promising third-generation semiconductor, β-Ga2O3 is facing bottleneck for its p-type doping. We investigated the electronic structures and the stability of various Cu doped structures of β-Ga2O3. We found that Cu atoms substituting Ga atoms result in p-type conductivity. We derived the temperature and absolute oxygen partial pressure dependent formation energies of various doped structures based on first principles calculation with dipole correction. Then, the critical thermodynamic condition for forming the abovementioned substitutional structure was obtained.
Keywords: first principle; gallium oxide; p-type semiconductor; thermodynamic conditions.