Human brain organoids assemble functionally integrated bilateral optic vesicles

Cell Stem Cell. 2021 Oct 7;28(10):1740-1757.e8. doi: 10.1016/j.stem.2021.07.010. Epub 2021 Aug 17.

Abstract

During embryogenesis, optic vesicles develop from the diencephalon via a multistep process of organogenesis. Using induced pluripotent stem cell (iPSC)-derived human brain organoids, we attempted to simplify the complexities and demonstrate formation of forebrain-associated bilateral optic vesicles, cellular diversity, and functionality. Around day 30, brain organoids attempt to assemble optic vesicles, which develop progressively as visible structures within 60 days. These optic vesicle-containing brain organoids (OVB-organoids) constitute a developing optic vesicle's cellular components, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. OVB-organoids also display synapsin-1, CTIP-positive myelinated cortical neurons, and microglia. Interestingly, various light intensities could trigger photosensitive activity of OVB-organoids, and light sensitivities could be reset after transient photobleaching. Thus, brain organoids have the intrinsic ability to self-organize forebrain-associated primitive sensory structures in a topographically restricted manner and can allow interorgan interaction studies within a single organoid.

Keywords: FOXG1; OVB-organoids; brain organoids; forebrain organoids; iPSCs; optic vesicles; primary cilium; primordial eye fields; retinal pigment epithelium.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Differentiation
  • Embryonic Development
  • Humans
  • Induced Pluripotent Stem Cells*
  • Organogenesis
  • Organoids*
  • Prosencephalon