Background: Sarcopenia plays a central role in the development of frailty syndrome. Nutrition and exercise are cornerstone strategies to mitigate the transition to frailty; however, there is a paucity of evidence for which dietary and exercise strategies are effective.
Objective: This large, multifactorial trial investigated the efficacy of different dietary strategies to enhance the adaptations to resistance training in pre-frail and frail elderly.
Methods: This was a single-site 16-week, double-blind, randomized, placebo-controlled trial conducted at the Clinical Hospital, School of Medicine - University of São Paulo, Sao Paulo, Brazil. Four integrated, sub-investigations were conducted to compare: 1) leucine vs. placebo; 2) whey vs. soy vs. placebo; 3) creatine vs. whey vs. creatine plus whey vs. placebo; 4) women vs. men in response to whey. Sub-investigations 1 to 3 were conducted in women, only. Two-hundred participants (154 women/46 men, mean age 72 ± 6 years) underwent a twice-a-week, resistance training program. The main outcomes were muscle function (assessed by dynamic and isometric strength and functional tests) and lean mass (assessed by DXA). Muscle cross-sectional area, health-related quality of life, bone and fat mass, and biochemical markers were also assessed.
Results: We observed that leucine supplementation was ineffective to improve muscle mass and function. Supplementation with whey and soy failed to enhance resistance-training effects. Similarly, supplementation with neither whey nor creatine potentiated the adaptations to resistance training. Finally, no sex-based differences were found in response to whey supplementation. Resistance exercise per se increased muscle mass and function in all sub-investigations. There were no adverse effects.
Conclusion: Neither protein (whey and soy), leucine, nor creatine supplementation enhanced resistance training-induced adaptations in pre-frail and frail elderly, regardless of sex. These findings do not support the notion that some widely used supplement-based interventions can add to the already potent effects of resistance exercise to counteract frailty-related muscle wasting and dynapenia.
Clinical trial registry: NCT01890382; https://clinicaltrials.gov/ct2/show/NCT01890382.
Data sharing: Data described in the manuscript will be made available upon request pending application.
Keywords: Anabolic resistance; Elderly; Muscle waste; Protein; Sarcopenia.
Copyright © 2021 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.