Simultaneously recorded subthalamic and cortical LFPs reveal different lexicality effects during reading aloud

J Neurolinguistics. 2021 Nov:60:101019. doi: 10.1016/j.jneuroling.2021.101019. Epub 2021 Jun 28.

Abstract

Many language functions are traditionally assigned to cortical brain areas, leaving the contributions of subcortical structures to language processing largely unspecified. The present study examines a potential role of the subthalamic nucleus (STN) in lexical processing, specifically, reading aloud of words (e.g., 'fate') and pseudowords (e.g., 'fape'). We recorded local field potentials simultaneously from the STN and the cortex (precentral, postcentral, and superior temporal gyri) of 13 people with Parkinson's disease undergoing awake deep brain stimulation and compared STN's lexicality-related neural activity with that of the cortex. Both STN and cortical activity demonstrated significant task-related modulations, but the lexicality effects were different in the two brain structures. In the STN, an increase in gamma band activity (31-70 Hz) was present in pseudoword trials compared to word trials during subjects' spoken response. In the cortex, a greater decrease in beta band activity (12-30 Hz) was observed for pseudowords in the precentral gyrus. Additionally, 11 individual cortical sites showed lexicality effects with varying temporal and topographic characteristics in the alpha and beta frequency bands. These findings suggest that the STN and the sampled cortical regions are involved differently in the processing of lexical distinctions.

Keywords: Basal ganglia; Deep brain stimulation; Electrocorticography (ECoG); Lexical processing; Pseudowords; Subthalamic nucleus.