RNA modifications, such as N6-methyladenosine (m6A), modulate functions of cellular RNA species. However, quantifying differences in RNA modifications has been challenging. Here we develop a computational method, xPore, to identify differential RNA modifications from nanopore direct RNA sequencing (RNA-seq) data. We evaluate our method on transcriptome-wide m6A profiling data, demonstrating that xPore identifies positions of m6A sites at single-base resolution, estimates the fraction of modified RNA species in the cell and quantifies the differential modification rate across conditions. We apply xPore to direct RNA-seq data from six cell lines and multiple myeloma patient samples without a matched control sample and find that many m6A sites are preserved across cell types, whereas a subset exhibit significant differences in their modification rates. Our results show that RNA modifications can be identified from direct RNA-seq data with high accuracy, enabling analysis of differential modifications and expression from a single high-throughput experiment.
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.