The mechanisms occurring during sepsis that produce an increased risk of cardiovascular (CV) disease (CVD) are poorly understood. Even less information exists regarding CV dysfunction as a complication of sepsis, particularly for sepsis-induced cardiomyopathy. However, recent research has demonstrated that non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, play a crucial role in genetic reprogramming, gene regulation, and inflammation during the development of CVD. Here we describe experimental findings showing the importance of non-coding RNAs mediating relevant mechanisms underlying CV dysfunction after sepsis, so contributing to sepsis-induced cardiomyopathy. Importantly, non-coding RNAs are critical novel regulators of CVD risk factors. Thus, they are potential candidates to improve diagnostics and prognosis of sepsis-induced cardiomyopathy and other CVD events occurring after sepsis and set the basis to design novel therapeutic strategies.
Keywords: Biomarkers; Cardiomyopathy; Epigenetics; Lnc-RNAs; Non-coding RNAs; Sepsis; circRNAs; miRNAs.
Copyright © 2021 Elsevier Inc. All rights reserved.