Previous cross-sectional studies have shown that skin microbiomes in adults are distinct from those in children. However, the human skin microbiome in individuals as they sexually mature has not been studied as extensively. We performed a prospective, longitudinal study to investigate the puberty-associated shifts in skin microbiota. A total of 12 healthy children were evaluated every 6-18 months for up to 6 years. Using 16S ribosomal RNA (V1-V3) and internal transcribed spacer 1 amplicon sequencing analyzed with Divisive Amplicon Denoising Algorithm 2, we characterized the bacterial and fungal communities of five different skin and nares sites. We identified significant alterations in the composition of skin microbial communities, transitioning toward a more adult microbiome, during puberty. The microbial shifts were associated with Tanner stages (classification method for the degree of sexual maturation) and showed noticeable sex-specific differences. Over time, female children demonstrated a predominance of Cutibacterium with decreasing diversity. Among fungi, Malassezia predominated at most skin sites in more sexually mature subjects, which was more pronounced in female children. The higher relative abundances of these lipophilic taxa-C. acnes and M. restricta-were strongly associated with serum sex hormone concentrations with known influence on sebaceous gland activity. Taken together, our results support the relationship between sexual maturation, skin physiology, and the skin microbiome.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.