HP1BP3 promotes tumor growth and metastasis by upregulating miR-23a to target TRAF5 in esophageal squamous cell carcinoma

Am J Cancer Res. 2021 Jun 15;11(6):2928-2943. eCollection 2021.

Abstract

HP1BP3, an ubiquitously expressed nuclear protein belonging to the H1 histone family of proteins, plays an important role in cell growth and viability. Recently, it was reported that HP1BP3 exclusively regulates miRNA biogenesis by enhancing transcriptional miRNA processing. Although HP1BP3 has previously been implicated in common cancer types, the mechanistic functions and effects of HP1BP3 and its role in the prognosis of esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we report that ESCC tissues and cell lines show increased endogenous expression of HP1BP3. Knockdown of HP1BP3 in TE-1 cells significantly inhibited tumor growth and metastasis in vivo emphasizing its role in cell proliferation and invasion. In contrast, overexpression of HP1BP3 significantly enhanced tumor growth and metastasis in Eca-109 cells. Further, we found that HP1BP3 regulates these functions by upregulating miR-23a, which directly binds to the 3'UTR region of TRAF5 downstream to alter cell survival and proliferation. Our findings describe a role for HP1BP3 in promoting tumor growth and metastasis by upregulating miR-23a to target TRAF5 in esophageal cancer. This study provides novel insights into the potential of targeting miRNAs for therapy and as clinical markers for cancer progression.

Keywords: HP1BP3; TRAF5; esophageal cancer; metastasis; miR-23a.