Simulation of 3D centimeter-scale continuum tumor growth at sub-millimeter resolution via distributed computing

Comput Biol Med. 2021 Jul:134:104507. doi: 10.1016/j.compbiomed.2021.104507. Epub 2021 May 21.

Abstract

Simulation of cm-scale tumor growth has generally been constrained by the computational cost to numerically solve the associated equations, with models limited to representing mm-scale or smaller tumors. While the work has proven useful to the study of small tumors and micro-metastases, a biologically-relevant simulation of cm-scale masses as would be typically detected and treated in patients has remained an elusive goal. This study presents a distributed computing (parallelized) implementation of a mixture model of tumor growth to simulate 3D cm-scale vascularized tissue at sub-mm resolution. The numerical solving scheme utilizes a two-stage parallelization framework. The solution is written for GPU computation using the CUDA framework, which handles all Multigrid-related computations. Message Passing Interface (MPI) handles distribution of information across multiple processes, freeing the program from RAM and the processing limitations found on single systems. On each system, Nvidia's CUDA library allows for fast processing of model data using GPU-bound computing on fewer systems. The results show that a combined MPI-CUDA implementation enables the continuum modeling of cm-scale tumors at reasonable computational cost. Further work to calibrate model parameters to particular tumor conditions could enable simulation of patient-specific tumors for clinical application.

Keywords: 3D tumor model; CUDA; Cancer simulation; Continuum models; Distributed computing; MPI; Mixture models; Parallelized computing; openMP.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Computer Simulation
  • Humans
  • Neoplasms*