In the United States, approximately 2.53 million people sustain a concussion each year. Relative to adults, youth show greater cognitive deficits following concussion and a longer recovery. An accurate and reliable imaging method is needed to determine injury severity and symptom resolution. The primary objective of this study was to characterize concussions with diffusion tensor imaging (DTI). This was performed through a normative Z-scoring analysis of DTI metrics, fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), to quantify patient-specific injuries and identify commonly damaged brain regions in paediatric concussion patients relative to healthy controls. It was hypothesized that personalizing the detection analysis through normative Z-scoring would provide an understanding of trauma-induced microstructural damage. Concussion patients were volunteers recruited from the Emergency Department of the McMaster Children's Hospital with a recent concussion (n = 26), 9 males and 17 females, mean age 14.22 ± 2.64, while healthy paediatric brain DTI datasets (25 males and 24 females, mean age 13.52 ± 1.03) were obtained from an MRI data repository. Significant abnormalities were commonly found in the longitudinal fasciculus, fronto-occipital fasciculus, and corticospinal tract, while unique abnormalities were localized in a number of other areas reflecting the individuality of each child's injury. Total injury burden, determined by the number of regions containing outliers per DTI metric per patient, was used as the metric to quantify the overall injury severity of each patient. The primary outcome of this analysis found that younger patients experienced a significantly greater injury burden when measured using fractional anisotropy (p < 0.001). These results show that DTI was able to detect microstructural changes caused by concussion, on a per-person basis, and has the potential to be a useful tool for improving diagnostic accuracy and prognosis of a concussion.
Keywords: MRI; concussion; diffusion tensor imaging (DTI); paediatric; personalized.
Copyright © 2021 Stillo, Danielli, Ho, DeMatteo, Hall, Bock, Connolly and Noseworthy.