PRMT5-mediated arginine methylation activates AKT kinase to govern tumorigenesis

Nat Commun. 2021 Jun 8;12(1):3444. doi: 10.1038/s41467-021-23833-2.

Abstract

AKT is involved in a number of key cellular processes including cell proliferation, apoptosis and metabolism. Hyperactivation of AKT is associated with many pathological conditions, particularly cancers. Emerging evidence indicates that arginine methylation is involved in modulating AKT signaling pathway. However, whether and how arginine methylation directly regulates AKT kinase activity remain unknown. Here we report that protein arginine methyltransferase 5 (PRMT5), but not other PRMTs, promotes AKT activation by catalyzing symmetric dimethylation of AKT1 at arginine 391 (R391). Mechanistically, AKT1-R391 methylation cooperates with phosphatidylinositol 3,4,5 trisphosphate (PIP3) to relieve the pleckstrin homology (PH)-in conformation, leading to AKT1 membrane translocation and subsequent activation by phosphoinositide-dependent kinase-1 (PDK1) and the mechanistic target of rapamycin complex 2 (mTORC2). As a result, deficiency in AKT1-R391 methylation significantly suppresses AKT1 kinase activity and tumorigenesis. Lastly, we show that PRMT5 inhibitor synergizes with AKT inhibitor or chemotherapeutic drugs to enhance cell death. Altogether, our study suggests that R391 methylation is an important step for AKT activation and its oncogenic function.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology
  • Arginine / metabolism*
  • Biocatalysis / drug effects
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology
  • Carcinogenesis / metabolism*
  • Carcinogenesis / pathology*
  • Cell Line, Tumor
  • Cell Membrane / drug effects
  • Cell Membrane / metabolism
  • Cell Proliferation / drug effects
  • Enzyme Activation / drug effects
  • Female
  • HEK293 Cells
  • Humans
  • Methylation / drug effects
  • Mice
  • Mice, Nude
  • Mutation / genetics
  • Protein Binding / drug effects
  • Protein Kinase Inhibitors / pharmacology
  • Protein-Arginine N-Methyltransferases / deficiency
  • Protein-Arginine N-Methyltransferases / metabolism*
  • Proto-Oncogene Proteins c-akt / chemistry
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Pyruvate Dehydrogenase Acetyl-Transferring Kinase / metabolism
  • RNA, Small Interfering / metabolism
  • Signal Transduction / drug effects

Substances

  • Antineoplastic Agents
  • PDK1 protein, human
  • Protein Kinase Inhibitors
  • Pyruvate Dehydrogenase Acetyl-Transferring Kinase
  • RNA, Small Interfering
  • Arginine
  • PRMT5 protein, human
  • Protein-Arginine N-Methyltransferases
  • Proto-Oncogene Proteins c-akt