Physiological articular contact kinematics and morphological femoral condyle translations of the tibiofemoral joint

J Biomech. 2021 Jun 23:123:110536. doi: 10.1016/j.jbiomech.2021.110536. Epub 2021 May 15.

Abstract

The changes of tibiofemoral articular cartilage contact locations during knee activities represent a physiological functional characteristic of the knee. However, most studies reported relative motions of the tibia and femur using morphological flexion axes. Few data have been reported on comparisons of morphological femoral condyle motions and physiological tibiofemoral cartilage contact location changes. This study compared the morphological and physiological kinematic measures of 20 knees during an in vivo weightbearing single leg lunge from full extension to 120° of flexion using a combined MRI and dual fluoroscopic imaging system (DFIS) technique. The morphological femoral condyle motion was measured using three flexion axes: trans-epicondylar axis (TEA), geometric center axis (GCA) and iso-height axis (IHA). At low flexion angles, the medial femoral condyle moved anteriorly, opposite to that of the contact points, and was accompanied with a sharp increase in external femoral condyle rotation. At 120° of flexion, the morphological measures of the lateral femoral condyle were more posteriorly positioned than those of the contact locations. The data showed that the morphological measures of femoral condyle translations and axial rotations varied with different flexion axes and did not represent the physiological articular contact kinematics. Biomechanical evaluations of the knee joint motion should include both morphological and physiological kinematics data to accurately demonstrate the functionality of the knee.

Keywords: Cartilage contact kinematics; Flexion axes; In vivo; Knee; Posterior femoral translation; Singe leg lunge.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomechanical Phenomena
  • Femur* / diagnostic imaging
  • Humans
  • Knee Joint* / diagnostic imaging
  • Range of Motion, Articular
  • Tibia / diagnostic imaging