Primordial super-enhancers: heat shock-induced chromatin organization in yeast

Trends Cell Biol. 2021 Oct;31(10):801-813. doi: 10.1016/j.tcb.2021.04.004. Epub 2021 May 14.

Abstract

Specialized mechanisms ensure proper expression of critically important genes such as those specifying cell identity or conferring protection from environmental stress. Investigations of the heat shock response have been critical in elucidating basic concepts of transcriptional control. Recent studies demonstrate that in response to thermal stress, heat shock-responsive genes associate with high levels of transcriptional activators and coactivators and those in yeast intensely interact across and between chromosomes, coalescing into condensates. In mammalian cells, cell identity genes that are regulated by super-enhancers (SEs) are also densely occupied by transcriptional machinery that form phase-separated condensates. We suggest that the stress-remodeled yeast nucleome bears functional and structural resemblance to mammalian SEs, and will reveal fundamental mechanisms of gene control by transcriptional condensates.

Keywords: 3D genome topology; Heat Shock Factor 1; heat shock response; inter-chromosomal interactions; phase separation; super-enhancers; transcriptional condensates.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Chromatin / genetics
  • Heat-Shock Response / genetics
  • Nuclear Bodies*
  • Saccharomyces cerevisiae* / genetics
  • Transcription Factors / genetics

Substances

  • Chromatin
  • Transcription Factors