Purpose: Natural killer (NK)-cell recognition and function against NK-resistant cancers remain substantial barriers to the broad application of NK-cell immunotherapy. Potential solutions include bispecific engagers that target NK-cell activity via an NK-activating receptor when simultaneously targeting a tumor-specific antigen, as well as enhancing functionality using IL12/15/18 cytokine pre-activation.
Experimental design: We assessed single-cell NK-cell responses stimulated by the tetravalent bispecific antibody AFM13 that binds CD30 on leukemia/lymphoma targets and CD16A on various types of NK cells using mass cytometry and cytotoxicity assays. The combination of AFM13 and IL12/15/18 pre-activation of blood and cord blood-derived NK cells was investigated in vitro and in vivo.
Results: We found heterogeneity within AFM13-directed conventional blood NK cell (cNK) responses, as well as consistent AFM13-directed polyfunctional activation of mature NK cells across donors. NK-cell source also impacted the AFM13 response, with cNK cells from healthy donors exhibiting superior responses to those from patients with Hodgkin lymphoma. IL12/15/18-induced memory-like NK cells from peripheral blood exhibited enhanced killing of CD30+ lymphoma targets directed by AFM13, compared with cNK cells. Cord-blood NK cells preactivated with IL12/15/18 and ex vivo expanded with K562-based feeders also exhibited enhanced killing with AFM13 stimulation via upregulation of signaling pathways related to NK-cell effector function. AFM13-NK complex cells exhibited enhanced responses to CD30+ lymphomas in vitro and in vivo.
Conclusions: We identify AFM13 as a promising combination with cytokine-activated adult blood or cord-blood NK cells to treat CD30+ hematologic malignancies, warranting clinical trials with these novel combinations.
©2021 American Association for Cancer Research.