Introduction: Neurite orientation dispersion and density imaging (NODDI), a multi-compartment diffusion-weighted imaging (DWI) model, may be useful for detecting early cortical microstructural alterations in Alzheimer's disease prior to cognitive impairment.
Methods: Using neuroimaging (NODDI and T1-weighted magnetic resonance imaging [MRI]) and cerebrospinal fluid (CSF) biomarker data (measured using Elecsys® CSF immunoassays) from 219 cognitively unimpaired participants, we tested the main and interactive effects of CSF amyloid beta (Aβ)42 /Aβ40 and phosphorylated tau (p-tau) on cortical NODDI metrics and cortical thickness, controlling for age, sex, and apolipoprotein E ε4.
Results: We observed a significant CSF Aβ42 /Aβ40 × p-tau interaction on cortical neurite density index (NDI), but not orientation dispersion index or cortical thickness. The directionality of these interactive effects indicated: (1) among individuals with lower CSF p-tau, greater amyloid burden was associated with higher cortical NDI; and (2) individuals with greater amyloid and p-tau burden had lower cortical NDI, consistent with cortical neurodegenerative changes.
Discussion: NDI is a particularly sensitive marker for early cortical changes that occur prior to gross atrophy or development of cognitive impairment.
Keywords: cerebrospinal fluid biomarkers; cortical microstructure; diffusion; magnetic resonance imaging; neurite orientation dispersion and density imaging; preclinical.
© 2021 the Alzheimer's Association.