Objective: Decompressive craniectomy (DC) improves functional outcomes in selected patients with malignant hemispheric infarction (MHI), but variability in the surgical technique and occasional complications may be limiting the effectiveness of this procedure. Our aim was to evaluate predefined perioperative CT measurements for association with post-DC midline brain shift in patients with MHI.
Methods: At two medical centers we identified 87 consecutive patients with MHI and DC between January 2007 and December 2019. We used our previously tested methods to measure the craniectomy surface area, extent of transcalvarial brain herniation, thickness of tissues overlying the craniectomy, diameter of the cerebral ventricle atrium contralateral to the stroke, extension of infarction beyond the craniectomy edges, and the pre and post-DC midline brain shifts. To avoid potential confounding from medical treatments and additional surgical procedures, we excluded patients with the first CT delayed >30 hours post-DC, resection of infarcted brain, or insertion of an external ventricular drain during DC. The primary outcome in multiple linear regression analysis was the postoperative midline brain shift.
Results: We analyzed 72 qualified patients. The average midline brain shift decreased from 8.7 mm pre-DC to 5.4 post-DC. The only factors significantly associated with post-DC midline brain shift at the p<0.01 level were preoperative midline shift (coefficient 0.32, standard error 0.10, p=0.002) and extent of transcalvarial brain herniation (coefficient -0.20, standard error 0.05, p <0.001).
Conclusions: In patients with MHI and DC, smaller post-DC midline shift is associated with smaller pre-DC midline brain shift and greater transcalvarial brain herniation. This knowledge may prove helpful in assessing DC candidacy and surgical success. Additional studies to enhance the surgical success of DC are warranted.
Keywords: Brain herniation; Cerebral edema; Hemicraniectomy; Ischemic stroke; Stroke outcome.
Copyright © 2021 Elsevier Inc. All rights reserved.