Objectives: There have been few large-scale studies utilizing exome sequencing for genetically undiagnosed maturity onset diabetes of the young (MODY), a monogenic form of diabetes that is under-recognized. We describe a cohort of 160 individuals with suspected monogenic diabetes who were genetically assessed for mutations in genes known to cause MODY.
Methods: We used a tiered testing approach focusing initially on GCK and HNF1A and then expanding to exome sequencing for those individuals without identified mutations in GCK or HNF1A. The average age of onset of hyperglycemia or diabetes diagnosis was 19 years (median 14 years) with an average HbA1C of 7.1%.
Results: Sixty (37.5%) probands had heterozygous likely pathogenic/pathogenic variants in one of the MODY genes, 90% of which were in GCK or HNF1A. Less frequently, mutations were identified in PDX1, HNF4A, HNF1B, and KCNJ11. For those probands with available family members, 100% of the variants segregated with diabetes in the family. Cascade genetic testing in families identified 75 additional family members with a familial MODY mutation.
Conclusions: Our study is one of the largest and most ethnically diverse studies using exome sequencing to assess MODY genes. Tiered testing is an effective strategy to genetically diagnose atypical diabetes, and familial cascade genetic testing identified on average one additional family member with monogenic diabetes for each mutation identified in a proband.
Keywords: MODY; diabetes; genetics in diabetes and obesity; molecular genetics.
© 2021 Walter de Gruyter GmbH, Berlin/Boston.