A next generation of tau PET tracers for the imaging of Alzheimer's disease and other dementias has recently been developed. Whilst the new compounds have now entered clinical studies, there is limited information available to assess their suitability for clinical applications. Head-to-head comparisons are urgently needed to understand differences in the radiotracer binding profiles. We characterized the binding of the tau tracers PI2620, RO948, MK6240 and JNJ067 in human post-mortem brain tissue from a cohort of 25 dementia cases and age-matched controls using quantitative phosphorimaging with tritium-labelled radiotracers in conjunction with phospho-tau specific immunohistochemistry. The four radiotracers depicted tau inclusions composed of paired helical filaments with high specificity, both in cases with Alzheimer's disease and in primary tauopathy cases with concomitant Alzheimer's disease pathology. In contrast, cortical binding to primary tauopathy in cases without paired helical filament tau was found to be within the range of age-matched controls. Off-target binding to monoamine oxidase B has been overcome, as demonstrated by heterologous blocking studies in basal ganglia tissue. The high variability of cortical tracer binding within the Alzheimer's disease group followed the same pattern with each tracer, suggesting that all compounds are suited to differentiate Alzheimer's disease from other dementias.
Keywords: head-to-head comparison; monoamine oxidase B; neuroimaging; positron emission tomography; tauopathies.
© The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain.