Quantifying changes in functional community structure driven by disturbance is critical to anticipate potential shifts in ecosystem functioning. However, how marine heatwaves (MHWs) affect the functional structure of temperate coral-dominated communities is poorly understood. Here, we used five long-term (> 10 years) records of Mediterranean coralligenous assemblages in a multi-taxa, trait-based analysis to investigate MHW-driven changes in functional structure. We show that, despite stability in functional richness (i.e. the range of species functional traits), MHW-impacted assemblages experienced long-term directional changes in functional identity (i.e. their dominant trait values). Declining traits included large sizes, long lifespans, arborescent morphologies, filter-feeding strategies or calcified skeletons. These traits, which were mostly supported by few sensitive and irreplaceable species from a single functional group (habitat-forming octocorals), disproportionally influence certain ecosystem functions (e.g. 3D-habitat provision). Hence, MHWs are leading to assemblages that are deficient in key functional traits, with likely consequences for the ecosystem functioning.
Keywords: Community structure; disturbance; functional change; functional diversity; functional ecology; reefs; stability; temperate; warming.
© 2021 The Authors. Ecology Letters published by John Wiley & Sons Ltd.