Spatiotemporal control of liquid crystal structure and dynamics through activity patterning

Nat Mater. 2021 Jun;20(6):875-882. doi: 10.1038/s41563-020-00901-4. Epub 2021 Feb 18.

Abstract

Active materials are capable of converting free energy into mechanical work to produce autonomous motion, and exhibit striking collective dynamics that biology relies on for essential functions. Controlling those dynamics and transport in synthetic systems has been particularly challenging. Here, we introduce the concept of spatially structured activity as a means of controlling and manipulating transport in active nematic liquid crystals consisting of actin filaments and light-sensitive myosin motors. Simulations and experiments are used to demonstrate that topological defects can be generated at will and then constrained to move along specified trajectories by inducing local stresses in an otherwise passive material. These results provide a foundation for the design of autonomous and reconfigurable microfluidic systems where transport is controlled by modulating activity with light.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Actin Cytoskeleton / metabolism
  • Light
  • Liquid Crystals / chemistry*
  • Myosins / metabolism
  • Spatio-Temporal Analysis

Substances

  • Myosins

Associated data

  • Dryad/10.5061/dryad.7wm37pvr6