Background: Bufalin is an active component of the traditional Chinese medicine "Chan Su" and is reported to play anti-tumor roles in cancer development, but its functional mechanism is largely unclear. This study intends to explore a potential action mode of bufalin in NSCLC.
Materials and methods: The malignant properties of NSCLC, including cell viability, proliferation, adhesion capacity, migration and invasion, were monitored by cell counting kit-8 (CCK-8), adhesion assay and transwell assay, respectively. The expression of circ_0046264 and miR-522-3p was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of proliferation- and migration-related markers was examined by western blot. The putative relationship between circ_0046264 and miR-522-3p was verified by dual-luciferase reporter assay, RIP assay and RNA pull-down assay. Animal experiments in nude mice were performed to investigate the role of bufalin in vivo.
Results: Bufalin treatment inhibited cell viability, colony formation, cell adhesion capacity, migration and invasion in NSCLC cells. Bufalin facilitated the expression of circ_0046264, and circ_0046264 overexpression also inhibited NSCLC cell viability, colony formation, cell adhesion capacity, migration and invasion. Besides, circ_0046264 knockdown partially counteracted the effects of bufalin. Further, miR-522-3p was identified as a target of circ_0046264, and its deficiency reversed the effects of circ_0046264 knockdown to suppress malignant activities of NSCLC cells. In addition, bufalin restrained the tumor growth and development in vivo via enhancing the expression of circ_0046264.
Conclusion: Bufalin played an anti-tumor role in NSCLC by modulating the circ_0046264/miR-522-3p pathway, which might be a potential functional mechanism of bufalin in NSCLC.
Keywords: Bufalin; NSCLC; circ_0046264; miR-522-3p.